

5th BioNanoNet Member Welcome Webinar

Advanced Manufacturing Laboratory

Carlos Sánchez Somolinos

Advanced Manufacturing Laboratory

Advanced Manufacturing Laboratory

GROUP MEMBERS

Group Leader

Sánchez-Somolinos

Project Manager

Lab Manager

PhD Students

Atrian

López-Valdeolivas

Ceamanos

Javadzadeh

Montesino

Espíndola

Sartori

Hernández

Spanish National Council of Research (CSIC) Institute of Nanoscience and Materials of Aragón (INMA)

- + Largest Public Research Organization in Spain and 3rd in Europe
- + 13,000 employees
- + 20% of Spanish R&D output
- + 120 Research Centres in Spain

From basic research to technological development around 8 areas

Humanities & Social Sciences

Biology & Biomedicine

Natural Resources

Agricultural Sciences

Physical Science & Technology

Material Science & Technology (11 research centres)

Food Science & Technology

-Chemical Science & Technology

Scientific Objective

Advanced Manufacturing Laboratory

Scientific Objective

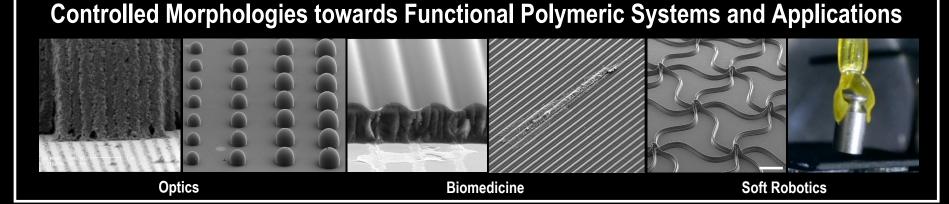
Multidisciplinary approach

Design of materials and systems

Processing

Functional Polymeric Systems

Optics


Biomedicine

Sooft Robotics

Advanced Manufacturing Laboratory

Soft Actuators and Soft Robotics. General overview

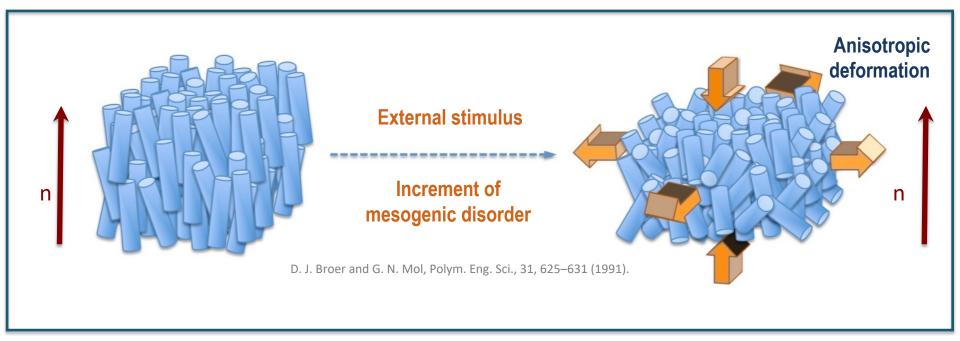
Soft Actuators

External stimulus

Hard vs Soft Robotics

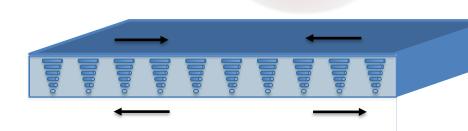
Flexibility and adaptability in deformation

D. Rus,et al Nature 2015, 521, 467


Implementation of soft robotic functions with potential use in the handling of small and delicate objects, soft tissues

Liquid Crystal Elastomers (LCEs)

Liquid crystalline polymeric networks



Liquid crystal polymeric networks based actuators. General overview

Twisted nematic orientational profile over the thickness

G.N. Mol et al, Adv. Funct. Mater. 15, 1155 (2005).

Engineering the director over the thickness allows deformation of the cantilevers with homogenuos stimulus

Photoactuated cantilevers and gripping devices

Y.Yu et al. Nature 425, 145 (2003)

S. Serak et al, Soft Matter 6, 779 (2010)

O.M. Wani et al, Nat. Comm 8, 15546 (2017)

Artificial cilia

C. L. van Oosten et al, Nat Mater. 8, 677 (2009)

Walking devices

A. H. Gelebart et al., Nature. 546, 632 (2017).

4D printing of LCEs

López Valdeolivas

Macromer

Photoinitiator

3D printing of liquid crystalline polymers

M. López-Valdeolivas et al., et al, Macromol. Rapid Commun. 39, 1700710 (2018)

4D printing of liquid crystalline elastomers. Director control

Printing speed vs printed fibre cross section area. Molecular alignment

100 µm

Main chain orientation parallel to the needle movement direction.

Digital control of the LCE morphology through 3D Printing

4D printing of liquid crystalline elastomers. Thermal actuation: Stress control

Thermal actuation lead to contraction along the printing direction

Thermal actuation

REVERSIBLE

Control over the material orientation during printing provides a control of the direction of the stresses within the stimulated material

4D printing of soft robotic functions. Summary

M. López-Valdeolivas et al., et al, Macromol. Rapid Commun. 39, 1700710 (2018)

Digitally control director and therefore mechanical stresses in the material

4D printing of soft robotic functions. Summary

López Hernández Valdeolivas Lombardini

Liu

Weight: 2 gr.

Robot weigth: 0,09 gr.

PRIME. Active Microfluidics

PRIME: A European collaborative project on the next generation of active microfluidic devices

FET-OPEN 2019-2023

https://www.project-prime.eu

This project has received Funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 829010

FET-OPEN H2020. PRIME: Objetivo y consorcio

Advanced and versatile PRInting platform for the next generation of active Microfluidic dEvices

Universidad Zaragoza

Desarrollo de una plataforma de fabricación de elastómeros cristal líquido que respondan a la luz para integrar todas las funciones fluídicas, válvulas y bombas en un chip microfluídico.

LCE based soft robotics

Grant Agreement Nr. 956150

Presupuesto total: 3.459.886,20 €

Presupuesto CSIC: 734.147,67 €

2021-2025

Coordinador

STORM-BOTS

Soft and Tangible Organic Responsive Materials progressing roBOTic functionS

Training a new generation of young researchers in soft robotics

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956150

STORM-BOTS ESRs

9 Academic partners

9 Beneficiaries

ESR₆

LCE

modellina

ESR7

LCE

theory

ESR3

Hvbrid Multi-

responsive

devices

ESR₁₀

Multiresponsive

devices

ESA

Hybrid

biomimetic

∠SR8

E-driven

actuators

9 Partner organizations Non-academic partners

⇒ PRECEYES

ESR12

E-driven

haptic skin

ESR13 Eye surgery **functions**

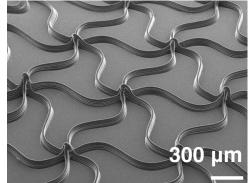
Vention

nB

ESR11

Reconfigurable

devices



Melt electrowriting of liquid crystal elastomers

Access to controlled morphology structures with unprecedented dimensions

Active scaffolds

Why does AML want to join BNN?. What do we expect?

- BNN has been a reliable project partner...looking forward to future ones.
- BNN has a large network of members in areas of interest for AML.
 Looking forward to collaborate with you.
- AML wants to be a key partner in functional polymeric materials.
- AML wants to introduce smart materials and soft robotics in relevant applications. BNN is a great opportunity for this.

ACKNOWLEDGEMENTS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 829010

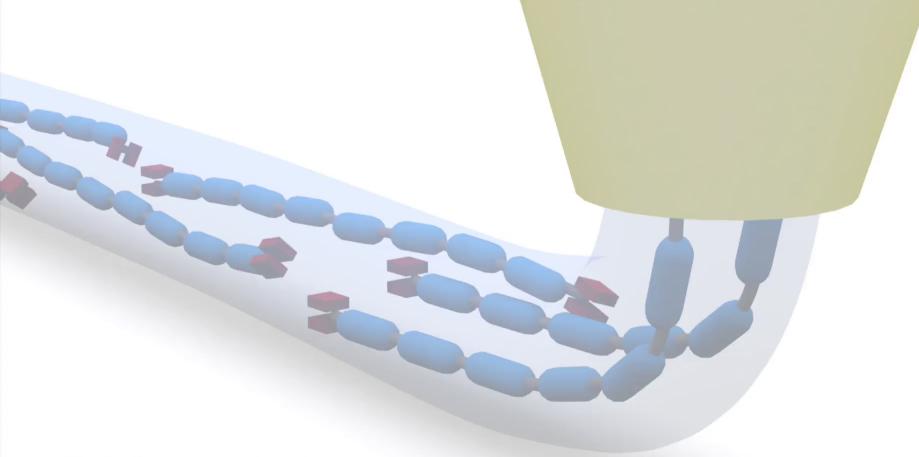
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956150

Our network of collaborators and... ...you for your attention

5th BioNanoNet Member Welcome Webinar

Advanced Manufacturing Laboratory

Carlos Sánchez Somolinos


Advanced Manufacturing Laboratory

4D Printed Actuators with Soft-Robotic Functions