

Bacterial Cellulose Emerging as Novel Material for Advanced Applications

Michael Egermeier, Christoph Unterweger, Tom Distler BNN Annual Forum, 07.10.2025

Competence Center for Wood Chemistry and Wood Composites

KPLUS

Competence center for wood chemistry and renewable resources

Research volume 2024: € 12,5 M

appr. 130

>100

PARTNER COMPANIES on

3

CONTINENTS
North America, Europe, Asia

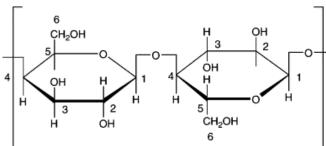
European leading research organization with a broad range of expertise & excellence

Materials research and process technology along the entire value chain

Basics and applied research projects at the economy-science interface

Strong **customer & partner relationships** with academic and industrial partners

Acquisition of national and EU funding to minimize partner risks of innovative research

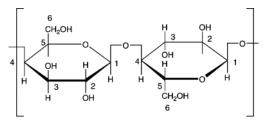


What is Bacterial Nanocellulose?

- Biopolymer of β-1,4-D-glucose units
 - chemically identical to plant cellulose
- Produced in nature by bacteria on fruits, juices: "mother of vinegar"
- Serves: protection against UV and drying out, oxygen supply (BC floats)
- Free of lignin and hemicellulose \rightarrow very pure
- Advantages: biocompatible, non-toxic, water-rich, sustainable

Properties of Bacterial Cellulose

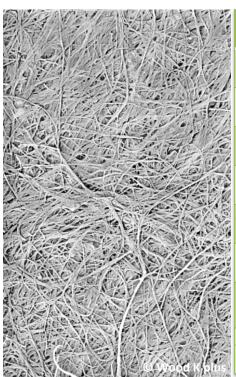
Nanostructure: highly porous, very large surface area



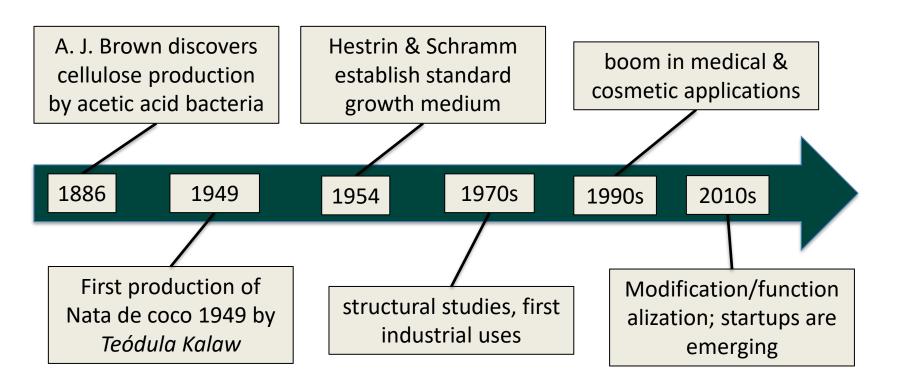
Mechanical strength: high tensile modulus, humidity-dependent

Crystallinity: >60 %, cellulose I structure

Hydrogel behavior: excellent water retention


Biocompatibility: non-toxic, degradable, cell-friendly

Chemical flexibility: easily modifiable (esterification, TEMPO, composites)

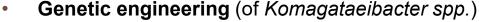

Why use bacterial cellulose?

Property	Bacterial Cellulose (BC)	Plant Cellulose (PC)
Purity	~99% (no lignin or hemicellulose)	80–90% (contains lignin, hemicellulose)
Fiber diameter	20–100 nm	1–100 μm
Crystallinity index	60–90%	40–70%
Degree of polymerization	2000–6000	1000–15000
Tensile strength	Up to 250 Mpa	~50–150 MPa
Cost	High	Low
Biocompatibility	Naturally biocompatible	After the removal of contaminants
Water retention	Up to 100× water retention of PC	Lower water holding capacity than BC

Bacterial cellulose history

Functionalized Bacterial Cellulose

How is BC functionalized?


- Chemical modification (TEMPO oxidation, acetylation)
 - → introduces carboxyl/acetyl groups
 - → improves hydrophilicity, reactivity

- In-situ composites (nanoparticles, graphene, metal ions)
 - → nanoparticles incorporated during biosynthesis
 - → antimicrobial, conductive, bioactive

- → surface functionalization with biomolecules
- → biocompatibility, bioactivity

- → engineered bacteria produce BC with fused proteins
- → smart materials

Global Players & BNC Production

BIOWEG (Germany)

Pilot plant in Quakenbrück, capacity up to 6 t/year (AgroPages, 2023).

CELLUGY (Denmark)

- Pilot plant several **t/y** in Søborg (4.9m€ investment, 2024).
 - -> Applications: cosmetics, microplastic replacements.

Polybion (Spain)

- Producer of Celium™
- Applications: fashion, footwear, sportswear, and automotive applications
- Production of 3500 sqm cellulose/year

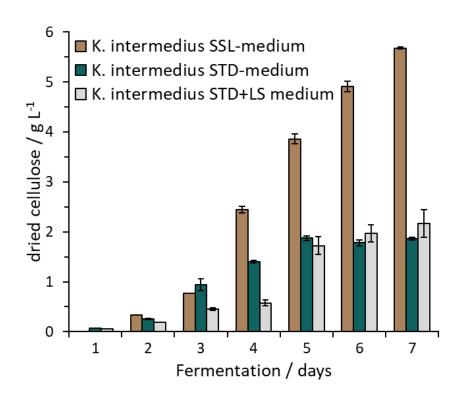
Global Estimate

• Total global BNC output (2023): ~2,800 t/year (high-value applications).

Asia – Nata de coco (food-grade BNC) as sweet dessert

- Nata de coco industry in Vietnam, Thailand, and Indonesia
- ~15,000 t/year raw nata de coco

https://www.cellugy.com/our-offerings/ecoflexy-color

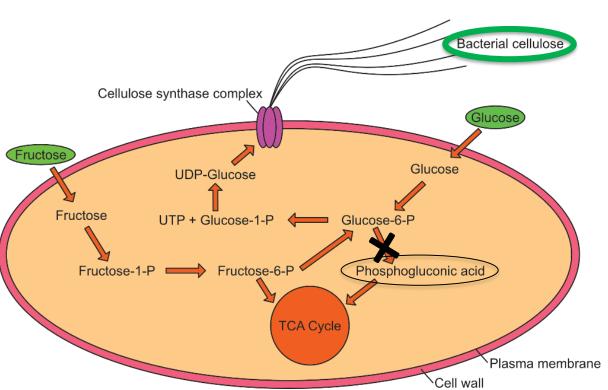


https://coconutvietnam.com.vn/news/nata-de-coco/475.html

Cellulose production on spent sulfit liqour media

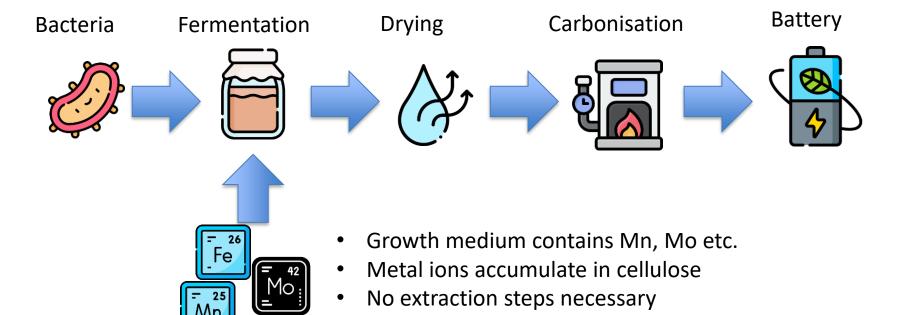
Highest yield on sulfite media

	STD+LS Medium	
1.86 g L ⁻¹	2.17 g L ⁻¹	5.68 g L ⁻¹


 Why does the sulfite media boost cellulose production?

Inhibition of gluconic acid pathway

- Blocking gluconic acid pathway improves cellulose production
- Has already been postulated in other papers
- No inhibition when pure Lignosulfonates were added


	ΔрΗ	gluconic acid [g/L]
STD-Medium	1.25	1.28
STD+LS Medium	1.51	1.69
SSL-Medium	0.48	0.01

Source: Distler et al., Bioresource Technology Reports, (2023).

From bacteria to battery

Icons: flaticon.com and Biorender

From bacteria to battery

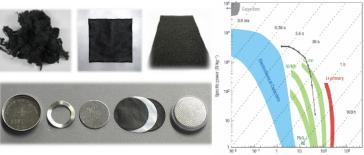
- In situ Addition of metal salts to fermentation media
- Metal ions incorporated directly into cellulose
- Direct carbonization of functionalized celluloses (no further treatment steps)

Goal

- Produce conductive carbon from bacterial cellulose
- Use in-situ functionalization for simplified synthesis
- Use functionalized cellulose as battery component

Bio-based Fibers & Carbon Materials

KPLUS


HT equipment

- Chamber furnaces (vacuum, Ar, N₂, air) (6 L, 2300 °C / 160 L, 900 °C)
- 3 tube furnace + fiber transport (5 zones, 300 °C / 5 zones, 1000 °C / 2 zones, 1600 °C)
- Rotary tube furnace (1100 °C, activation in CO₂ or steam)
- Chemical labs incl. comprehensive material characterization & testing

Bio-based functional carbons / carbon fibers

- Activated carbon, hard carbon, conductive fillers etc.
 - · From cellulose, lignin, wood, cork, waste biomass
 - Controllable pore size distributions specific surface areas up to 3400 m²/g
 - Tunable interlayer spacing and crystallite size by variation of precursor and temperature (max. 2300°C)
 - · Catalytic graphitization using Fe & Ca compounds
 - · Heteroatom doping & surface modification
 - Electrodes for supercaps, Na-ion batteries, Li-S batteries, fuel cells etc.
 - · Filters for waste water or air treatment

Bio-based continuous carbon fibers

- From cellulose (commercial) or lignin filaments (melt spun at Wood K plus)
- · Material development & process optimization
- · Prepared CF successfully used in CFRP 3D printing

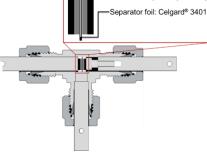
Bio-based SiC ceramics

- From wood, novolak + LDPE
- Extrusion, injection molding or 3D printing followed by carbonization and Si infiltration
- Tunable C content → conductivity

Preparation of Activated Carbon Fibers

KPLUS

C-coated Al-foil



Precursor

Pretreatment

Carbonization

Activation

Electrode preparation

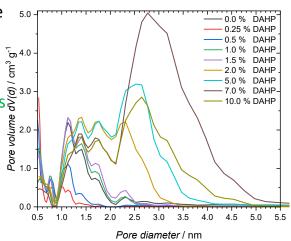
Building of test cells

- Washing
- Drying

- Treatment with DAHP solution (impregnation)
- Drying

- Under nitrogen atmosphere
- Variation of heating rate and temperature
- Variation of time, temperature, and gas flow
- Activation agents:
 CO₂, H₂O, KOH

- Grinding
- Kneading with PTFE & graphite (80/10/10)
- Rolling & punching out


 Under argon atmosphere

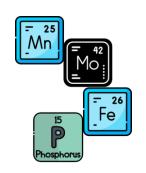
14

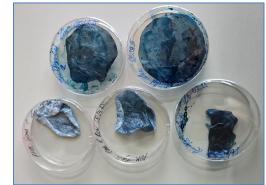
Previous Results – Motivation

- Activated carbon fibers with optimized pore size distributions can be prepared from cellulose fibers
- Supercapacitors with activated carbon fiber electrodes have low internal resistance
- Significant outperformance over commercial activated carbon
- Drawbacks
 - Pre-treatment needed
 - binder & conductive additive
- grinding of fibers
 - just 80% "active" material
 - → doped cellulose nanofibers (5)3.0
 - → self-standing electrodes

0.36 s104 Specific power (W kg⁻¹) 10^{3} 10^{2} 10^{3} 10-1 10 Specific energy (Wh kg-1)

P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, *Nature Materials* **7** (2008) 845–854.


Functional carbons from bacterial cellulose


KPLUS

- Bacterial cellulose produced in rotating disc reactor (RDR).
 Scale-Up to 5-litre with 16 discs.
- Functionalization and carbonization of obtained cellulose layers for novel battery applications.

5-L rotating disc reactor for bacterial cellulose production.

Functionalisation of bacterial cellulose using heteroatoms to increase conductivity.

Functionalised bacterial cellulose before/after carbonisation procedure.

Visit us at JKU Science Park

Dr. Michael EgermeierBioprocess Technologies

Tel.: +43 (0)732 2468 6781 m.egermeier@wood-kplus.at

Dr. Christoph UnterwegerBiobased Fibers and Carbon Materials

Tel.: +43 (0)732 2468 6758 c.unterweger@wood-kplus.at

Kompetenzzentrum Holz GmbH

Altenberger Strasse 69 A-4040 Linz www.wood-kplus.at

This presentation has been designed using images from Biorender and Flaticon.com

